Individual Classification of Emotions Using EEG
نویسندگان
چکیده
منابع مشابه
Individual Classification of Emotions Using EEG
Many studies suggest that EEG signals provide enough information for the detection of human emotions with feature based classification methods. However, very few studies have reported a classification method that reliably works for individual participants (classification accuracy well over 90%). Further, a necessary condition for real life applications is a method that allows, irrespective of t...
متن کاملClassification of Emotions from Eeg Using K-nn Classifier
This paper describes a method for automatic classification of different human emotions obtained using Electroencephalograph (EEG) signals. The human brain is a complex system. The superimposition of the diverse processes in the brain is recognized through EEG signals. Electroencephalographic measurements are commonly used in medical applications and in the research areas to study and analyse di...
متن کاملClassification of EEG-based motor imagery BCI by using ECOC
AbstractAccuracy in identifying the subjects’ intentions for moving their different limbs from EEG signals is regarded as an important factor in the studies related to BCI. In fact, the complexity of motor-imagination and low amount of signal-to-noise ratio for EEG signal makes this identification as a difficult task. In order to overcome these complexities, many techniques such as variou...
متن کاملEffectiveness of Statistical Features for Human Emotions Classification using EEG Biosensors
This study proposes a statistical features-based classification system for human emotions by using Electroencephalogram (EEG) bio-sensors. A total of six statistical features are computed from the EEG data and Artificial Neural Network is applied for the classification of emotions. The system is trained and tested with the statistical features extracted from the psychological signals acquired u...
متن کاملClassification of Human Emotions from Electroencephalogram (EEG) Signal using Deep Neural Network
Estimation of human emotions from Electroencephalogram (EEG) signals plays a vital role in developing robust Brain-Computer Interface (BCI) systems. In our research, we used Deep Neural Network (DNN) to address EEG-based emotion recognition. This was motivated by the recent advances in accuracy and efficiency from applying deep learning techniques in pattern recognition and classification appli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Biomedical Science and Engineering
سال: 2014
ISSN: 1937-6871,1937-688X
DOI: 10.4236/jbise.2014.78061